
Automated	Sharded MongoDB	
Deployment	and	Benchmarking	

for	Big	Data	Analysis	
Gregor	von	Laszewski

Mark	McCombe
laszewski@gmail.com
Indiana	University

Intelligent	Systems	Engineering	Department

laszewski@gmail.com



Acknowledgement

• This	study	has	been	conducted	as	part	of	the	I524	class	with	the	topic	Big	
Data	and	Software	Projects
• The	class	used	the	following	resources

• Students	computers
• FutureSystems (DSC	@	Indiana	University)	a	continuation	of	the	FutureGrid (NSF)
• Chameleon	Cloud	(NSF):	Project	CH-818664,	KVM
• Jetstream	(NSF)

• Some	students	also	elected	to	use	
• AWS
• Azure

• All	resources	as	far	as	we	know	were	provided	to	us	for	free.

laszewski@gmail.com



Outline

• Motivation	for	the	project
• IU	educates	data	scientists

• Sharded Mongo	DB	deployment

• Benchmarks

• Usage	Observations

• Conclusion
• Why	we	did	not	do	a	large	scale	study	…
• Implication	for	future	classes	…

laszewski@gmail.com



Data	Scientist
Analysis
• Statistics
• Machine	Learning
• Optimization

Programming
• Python,	JavaScript
• Distributed	Comp.	
• Cloud	Programming

Infrastructure
• Cloud	Computing							
• Distributed	Systems
• DevOps																														

Visualization															
• Basic	Skills
• Customize	for	Data	Set

Domain	Knowledge

Communication
• Paper	write-up
• Online	Publication

• Requires	integrated	knowledge	
in	several	key	areas.	We	use	a	
project	that	addresses:

• Communication
• Analysis
• Visualization
• Programming
• Infrastructure	
• Domain	knowledge

• Education	Programs	need	to	
address	all	of	them

Data	
Scientist

Sharded
Mongo	DB	

Deployments

Sharded
M
ongo	DB	

Deploym
ents

laszewski@gmail.com



Continuous	Improvement	vs.	Continuous	
Deployment	via	DevOps

design	&	
modification

Cloudmesh	
script

deployment

data

execution

verification

Continuous
improvement

• DevOps	is	integrated
• Leads	to	improvement	when	not	only	
targeting	application	but	also	deployment	
environment.



Cloudmesh	Shell	– Make	Booting	Simple

$	emacs cloudmesh.yaml
$	cms default	cloud=NAME
$	cms default	image=NAME
$	cmd default	flavor=NAME
$	cms vm boot

$	cms vm login

$	cms vm delete

• cloudmesh.yaml

• Prepare	defaults	

• Boot

• Login

• Management …



Cloudmesh	Shell	– Manage	Hybrid	Clouds

$	cms aws boot	
$	cms vm boot

$	cms default	cloud=chameleon
$	cms vm boot

$	cms default	cloud=IUCloud
$	cms vm boot

• Boot	Cloud	A

• Boot	Cloud	B

• Boot	Cloud	C	



Cloudmesh	Shell	– Create	a	Hadoop	Cluster

$	cm	default	cloud=chameleon
$	cm	cluster	define	- -count=10	

- -flavor=m1.large
$	cm	hadoop define	spark

$	cm	hadoop sync	#	~30	sec

$	cm	hadoop deploy	#	~	7	min

• Set	cloud

• Define	cluster

• Define	hadoop Cluster

• Sync	definition	to	db

• Deploy	the	cluster



Cloudmesh	Shell	– Create	a	Hadoop	Cluster

$	cm	default	cloud=IUCloud
$	cm	cluster	define	- -count=10	

- -flavor=m1.large

$	cm	nist fingerprint	 #	~	30	min

• Set	cloud

• Define	cluster

• Run	NIST	usecase

Additional	resources:	
https://github.com/cloudmesh/classes/blob/master/docs/source/notebooks/fingerprint_matching.ipynb



Mongo	DB	Features

• Document	oriented	NoSQL	data	
base
• JSON-like	documents
• Specified	through	schemas

• Cross-platform	compatible
• Free	open	source

• NoSQL	=	data	that	is	modeled	in	
means	other	than	the	tabular	
relations	used	in	relational	
databases.

• Ad-hoc	queries
• Indexing
• Replication
• Load	Balancing	with	Sharding
• File	Storage
• Aggregation
• Server	Side	JavaScript
• Capped	collections

laszewski@gmail.com



Mongo	DB	- Sharding

• User	selects	shard	key that	determines	how	the	data	in	a	collection	
will	be	distributed.	
• data	is	split	into	ranges	(based	on	the	shard	key)	
• distributed	across	multiple	shards.	

• (a)	a	shard	is	a	master	with	one	or	more	slaves.	
• (b)	or	the	shard	key	can	be	hashed	to	map	to	a	shard	allowing	even	data	distribution.

• MongoDB	can	run	over	multiple	servers,	
• balancing	the	load	
• duplicating	data	for	fault	tolerance

laszewski@gmail.com



Architecture

laszewski@gmail.com



Benchmarks	on	Clouds

• Three	clouds	were	selected	for	deployment:	
• Chameleon	Cloud
• Futuresystems
• Jetstream

• Goal
• Compare	within	the	allocation	limitations	of	a	class	multiple	cloud	performances	by	
varying	a	number	of	parameters.	

• Scripted	Deployments
• We	developed	automated	scripted	deployment	and	benchmarking	process
• cloud	name	is	passed	as	a	parameter	
• Customization	for	the	deployment	of	MongoDB	is	passed	via	commandline

laszewski@gmail.com



Cloud	Comparison

FutureSystems Chameleon	 Jetstream	
CPU	 Xeon	E5-2670	 Xeon	X5550	 Haswell	E-2680	
Cores	 1024	 1008	 7680	
Speed	 2.66GHz	 2.3GHz	 2.5GHz	
RAM	 3072GB	 5376GB	 40TBr	
Storage	 335TB	 2TB	 2	TB	
Deployment	
year 2010 Early 2015	 OS	2016

laszewski@gmail.com



Flavor	and	OS

• Ubuntu	16.04	LTS	(Xenial Xerus)	operating	system.	
• Flavors	– slightly	different	between	clouds	we	use	most	alike
• m1.medium	Chameleon	Cloud	
• m1.medium	FutureSystems
• m1.small	was	used	on	Jetstream

• Flavors	have	more	resources	than	Chameleon	and	FutureSystems
• Storage	is	lower	on	jetstream

Cloud Flavor VCPU RAM Size 
Chameleon m1.medium 2 4 40 
FutureSystems m1.medium 2 4 40 
Jetstream m1.small 2 4 20 

laszewski@gmail.com



Requirements
• Resource	Requirements	
• 60	users	->	VM	hours	were	limited.	

• Capability	Requirements	
• creation	of	VMs	and	the	execution	of	our	applications	within	these	VMs	

• Monitoring	Requirements	
• Monitoring	and	benchmarking	was	conducted	by	hand	without	need	for	
specialized	services.	

• New	software	created	
• improved	the	cloudmesh client	software	[5][6]	[7],	essential	to	the	success	of	
the	class.	

• Performance	Comparison	
• We	have	conducted	a	significant	performance	comparison	among	all	clouds.	

laszewski@gmail.com



Benchmark

• Deployment	times
• Comparing	Mongo	DB	versions
• Comparing	Clouds

laszewski@gmail.com



Deployment	times

laszewski@gmail.com



Deployments

• Deployment	A	
• a	simple	deployment	with	only	
one	of	each	component	being	
created..	

• Deployment	B	
• variation	in	config servers	and	
shards	and	an	additional	Mongos	
instance.	

• Deployment	C	
• focus	on	high	performance.	
• 9	shards	no	replication

Config Mongos	 Shards	 Replicas	 Seconds	

A	 1	 1	 1	 1	 330	

B	 3	 2	 3	 3	 1059	

C	 1	 1	 9	 1	 719	
laszewski@gmail.com



Variing other	Deployment	times	

Config
Servers -c Mongos -m Shards -s Replicas -r Time in 

Seconds 

5 1 1 1 534 

1 5 1 1 556 

1 1 5 1 607 

1 1 1 5 524 

laszewski@gmail.com



Data

• Major	League	Baseball	PITCH	f/x	data	
obtained	by	using	the	program	Baseball	
on	a	Stick	(BBOS).	

• BBOS	is	a	Python	program	created	by	
"willkoky"	and	hosted	on	sourceforge.net
which	extracts	data	from	mlb.com and	
loads	it	into	a	MySQL	database.	

• data	was	captured	locally	to	the	default	
MySQL	database	and	then	extracted	to	a	
CSV	

• CSV	file	was	imported
• Contains	5,508,014	rows	and	61	columns.	
1.58	GB	in	size	uncompressed.	

laszewski@gmail.com



Version	Comparison

laszewski@gmail.com



Version	Comparison:	3.2	vs	3.4
(Chameleon	Cloud)

Find	Command	 Mongoimport Command	

laszewski@gmail.com



Version	
Comparison:	
3.2	vs	3.4	
Map	Reduce	
(Chameleon	Cloud)	

Map	Reduce	

Result:	not	too	many	changes

laszewski@gmail.com



Cloud	Comparison
Sharding Test

laszewski@gmail.com



Figure	2:	Mongoimport Command	- Sharding Test	

laszewski@gmail.com



Figure	1:	Find	Command	- Sharding Test	

• Chameleon	– Jetstream	
• Same

• FutureSystems
• Acceptable	results	with	higher	
number	of	shards

laszewski@gmail.com



Figure	3:	MapReduce	- Sharding Test	

• Chameleon	– jetstream
• Same

• Futuresystems
• Significantly	worse

laszewski@gmail.com



Figure	4:	Find	Command	- Replication	Test	

• Replication
• Chameleon	cloud	seems	to	
perform	slightly	better
• Futiresystems performs	
surprisingly	well

laszewski@gmail.com



Cloud	Comparison
Replication	Test

laszewski@gmail.com



Figure	5:	Mongoimport Command	- Replication	
Test	

• Chameleon	– jetstream
• Same

• Futuresystems
• Significantly	worse

laszewski@gmail.com



Figure	6:	MapReduce	- Replication	Test	

• Chameleon
• Slightly	better	than	Jetstream

• Futuresystems
• Significantly	worse

laszewski@gmail.com



Conclusion

• Jetstream	and	Chameleon	Cloud	
are	essentially	the	same.
• In	some	instances	Chameleon	
Cloud	performs	slightly	better	
• (disks/network	…)

• As	expected	FutureSystem is	older	
machine	and	performs	not	as	well
• For	some	queries	FutureSystem is	
surprisingly	good

• Experiments	were	limited	by	
number	of	node	hours	for	60	
students	in	class.	
• After	class	is	over	no	time	to	run	on	
larger	examples
• Its	not	obvious	for	a	teacher	when	
to	give	larger	allocations	for	a	
student	that	performs	well.
• Allocation	process	broken
• Futuresystems allocation	process	is	
superior

laszewski@gmail.com


